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Regard f(x) = z* + 1 as a polynomial in Cl[z], by the fundamental theorem of
algebra, it has 4 roots counting multiplicities. And more generally, given a real
polynomial f(z) € R[x], if & € C is a complex root, then its complex conjugate &
is also a root, this is because complex conjugation is an automorphism of C which
fixes the subfield R C C, therefore 0 = f(a) = f(a) = f(a), where f is the
polynomial obtained from taking conjugates of all coefficients.

Therefore if o € C \ R, the factor (x — a)(z — a) = 2? — (a + a) + aa divides
f(z), and has real coefficients. So it is an irreducible factor. By induction, we see
that any real polynomial has irreducible factors of degree 1 or 2.

In the present case, simply for degree reason, f(z) = x* + 1 is reducible in R[z].
Specificcally, one may factorize it as 2* + 1 = 2 +22% + 1 — 222 = (2? + 1)? —
(vV2x)? = (2% + 2z + 1)(2> — V22 + 1). Tt is simple to see that the quadratic

factors are irreducible as they have no real roots.

Since Q[x] C R[x], part (a) shows a factorization of z* + 1 into irreducible in R[z],
which admits unique factorization property. If it was possible to factorize z* + 1 into
nontrivial factors over Q[z], then such a factorization holds also in R[x]. This would
contradict unique factorization property. So z* + 1 must be irreducible in Q[z].

The polynomial is irreducible in Z[x] according to Eisenstein’s criterion when ap-
plied to the prime 11. So by Gauss’ theorem it is irreducible in Q[z].

This is a cyclotomic polynomial, its irreducibility over Z[z] is a consequence of
Eisenstein’s criterion for the prime 5, so Gauss’ theorem implies that it is irreducible

over Q|z].

A degree 3 polynomial over F'[z| where F is a field, is irreducible if and only if it
has no linear factor, which is equivalent to that it has not root in F'. By proposition
12.1.1, we know that if 2> — 722 + 32 + 3 has a root, then it must be a rational
number ¢ that when written in reduced fraction form ¢ = s/t, we have s dividing 3
and ¢ dividing 1, therefore ¢ = £1 or 3. It is clear that by direct checking 1 is a
root, therefore it is reducible.

Similar to previous question, we simply have to check whether 23 — 5 has a root in
Z,. Here we compute:

x |0 1123]..
23 —5 71310

As we see quickly, 3 is a root of 2® — 5, therefore x — 3 is a factor. So it is reducible.



(g) A degree 4 polynomial is reducible if and only if it is either a product of two degree

2 irreducibles or it contains a linear factor. As we can compute directly, f(z) =
'+ + 1has f(0) = f(1) = 1. So it has no roots in Z,. So it is reducible, it must
be a product of degree 2 irreducible polynomials.
Note that the degree 2 polynomials in Z,[x] are 2, 2% + 1,22 + x, 2% + x + 1. Itis
clear that the first three are all reducible, as they have roots in Zs. So there is only
one irreducible degree 2 polynomial. So if f(x) was reducible, it must be equal to
(2% 4+ x + 1)% This computes to z* + 22 + 1, which is not equal to f(x). So f(x) is
in fact irreducible.

2. Assuming Gauss’ theorem, if f(x) = Y . a;z" is a polynomial with integer coefficients,

5.

and ¢ = s/t € Q is a rational root written in reduced form. Then = — ¢ is a factor of f(z)
in Q[z]. Gauss’s theorem implies that there is a linear polynomial in Z[x] that divides
f(z). The primitive of = — ¢ is given by tz — s € Z[z]. Therefore f(x) = (tx — s)p(z)
for some p(x) € Z[z], from this, it is clear that ¢ divides a,, and s divides ay.

. Suppose that f(z) = 2" +52""" 43 = g(x)h(z) for some polynomials g, h € Z[z]. Then

we denote g, h, etc by the corresponding polynomial in Zs[z]. We have 2"~ ! (2+4-5) = g-h.
Since Zs [x]_has unique factorization, we know that without loss of generality, up to units,
g=x"and h =27 (x +5) where i + j =n — 1.

Now notice that if 7 or j is nonzero, then the constant coefficients of g, h are 0, therefore
the constant coefficients of g, h are divisible by 3. So f = gh has constant coefficient 3
divisible by 9, that is a contradiction. So we must have either : = 0 or j = 0.

If j = 0,theng = 2" ' and h = = + 5. That implies that h(z) is a linear polynomial.
Therefore f(x) would have integer roots by proposition 12.1.1, the root if exists must
be +1 or £3. We can directly check that none of these is a root of f(z): f(1) = 9,
f(=1) = —1 when n is even and f(—1) = 7 when n is odd; f(3) > 0 clearly and
f(=3) = 2(=3)""! 4 3is never 0. So it is impossible to have linear factors, and this case
is rejected.

So the only possibility is i = 0, in which case § = 1 and h = 2" (2 + 5). So f(z) is
irreducible.

Suppose that f(z) = [[;_,(z — a;) — 1 is reducible over Q[z], by Gauss lemma it
is reducible over Z[z] as well. Write f(x) = g(x)h(z) for some monic polynomi-
als g,h € Z[x], since f is monic, we have degg,degh < deg f. Note that f(a;) =
g(a;)h(a;) = —1. Therefore g(a;) and h(a;) take values +1 with opposite signs. There-
fore g(a;)+h(a;) = 0fori =1,...,n. Since deg(g+h) < max{deg f,deg g} < deg f =
n, according to the fundamental theorem of algebra, it is impossible for a nonzero poly-
nomial of degree less than n having n distinct roots.

The only possibility is that g+ h = 0, so n is even and f(x) = —g(z)?. This also leads to
a contradiction as the leading coefficient of LHS is 1 and —1 on the RHS. So f(x) must
be irreducible.

(a) The content of this exercise (and other generalities about Gaussian integers, etc,
won’t appear in the exams.)
Recall that in Z[i], there is a norm function N(a + bi) := a® + b? that satisfies
the property that if a + bi divides ¢ + di, then N(a + bi) divides N(c + di). We



have 2 = (1 +4)(1 —i) = N(1 +4). Now N(z) = 1 if and only if z is a unit,
i.e. z = %1 or £i. So we see that 1 + i is an irreducible (a prime) in Z[i]. By a
generalization of proposition 12.1.1, if 2* — 4z + 2 has a root in Z[i], it must be
+1, +i, £(1 +4), (1 —4), +£2 or £2i. Note that for +¢, (1 + 1), £(1 — i) or £24,
the 2* term evaluates to a real number, so they are clearly not roots of z* — 4z + 2.
For £1, 2, directly checking also shows that they are not roots.

So if #* — 4 + 2 is reducible, it must be a product of two degree 2 irreducible
polynomials.

(b) Consider now z* — 4x + 2 over Zs. Note that 2 is aroot, as 2* — 8 +2 = 0 € Zs.
By long division, one calculates z* — 4z + 2 = (z — 2)(2® + 22 + 42 + 4). And
p(x) = 23 +22% + 4z + 4 is irreducible in Zs since it has no roots: p(0) = 4,p(1) =
L,p(2) = 3,pB3) = 1,p(4) = 1.

(c) Recall that Z[i]/(2 — i) = Zs, so there is a surjective map Z[i] — Z; by sending
a+ bi — a+2b mod 5. Therefore if f(x) was reducible in Z[d], it is a product of
two degree 2 polynomials, when passed to Zs, we may write f(z) has a product of
two degree 2 polynomials in Zs[x] (which may not be irreducible). This is a contra-
diction, as the factorization types do not agree (it contradicts unique factorization in

6. No. Itis not a field in general. For example, for a prime number p, regarded as a constant
polynomial, is irreducible in Z[z]. And the quotient ring Z[z]/(p) = Z,[z] is not a field,
as « + (p) is not invertible. If f(x) is a higher degree irreducible polynomials in Z[z]. We
claim that Z[z]|/(f(z)) has characteristic 0, and n > 1 is non-invertible in the quotient
ring, for some suitable n.

7. No, if they were isomorphic, let ¢ : Q(v/2) — Q(+/3) be an isomorphism, then p(1/2)? =
gp(\/§2) = (2) = 2 implies that 2 has a square root in Q(+/3) as well. Let a + bv/3 be a
square root, then (a + bv/3)? = 2 yields a® 4 30 + 2ab\/3 = 2 for a, b € Q. So either a
or b is equal to 0, either case is impossible as both 2 and % does not have square roots in

Q.



